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Summary

A computational procedure is presented for the

solution of frictionless contact problems of aircraft

tires. The Space Shuttle orbiter nose-gear tire is

modelcd using a two-dimensional laminated aniso-

tropic shell theory with thc effects of variation in

material and geometric parameters, transverse shear

deformation, and geomctric nonlinearities included.
The contact conditions are incorporated into the for-

mulation by using a perturbed Lagrangian approach
with the fundamental unknowns consisting of the

stress resultants, the generalized displacements, and

the Lagrange multipliers associated with the contact
conditions. The elemental arrays are obtained by us-

ing a modified two-field, mixed variational principle.

Numerical results are presented for the Spacc

Shuttle nose-gear tire inflated and pressed against
a flat plate. Comparison is made with experiments

conducted at NASA Langley Research Center. The

detailed information presented herein assists in gain-

ing insight into the structural response of the tire.
The numerical studies have demonstrated the high

accuracy of the mixed formulation models and the

effectiveness of the computational procedure, which

combines both the geometrically nonlinear terms and
the contact conditions in one iteration loop.

Introduction

Numerical modeling of the response characteris-
tics of aircraft tires remains one of the most chal-

lenging applications of computational structural me-
chanics. There are several aspects of this problem

that can lead to numerical difficulties and/or exces-

sive computational expense. During normal aircraft

operations, these tires are subjected to large dis-

placements and temperature gradients. The tire is

a composite structure composed of rubber, textile,
and steel constituents that exhibits anisotropic and

nonhomogeneous material properties. Furthermore,
all the forces exerted on the tire associated with take-

off and landing operations are generated through the

tire-pavement interface; thus, any practical modeling
tool must include a good contact algorithm. Thesc

facts and attendant difficulties emphasize the need

to develop modeling strategies and analysis methods,

including efficient contact algorithms, that are both

powerful and economical. In recent years nonlinear

analyses of static and dynamic problems involving
contact have been the focus of intense research ac-

tivities. Novel techniques that have emerged from

these efforts include semianalytic finite-element mod-

els for nonlinear analysis of shells of revolution (refs. 1

and 2), reduced methods (refs. 3 and 4), and operator
splitting techniques (refs. 5-7). Applications of these

ncw tcchniques to tire modeling are summarized in

references 4, 7, and 8.

Scope of Investigation

Current research in tire modeling and analysis

at NASA Langley Research Center is aimed at de-

veloping an accurate and efficient strategy for pre-

dicting aircraft tire response. The focus of this

paper is directed toward the developments in tire

contact techniques. These contact algorithms arc
incorporated into a mixed formulation, two-field,
two-dimensional finite-element code based on the

moderate-rotation Sanders-Budiansky shell theory
with the effects of transverse-shear deformation and

laminated anisotropic material response included

(refs. 9 and 10). The contact algorithm is based
on the perturbed Lagrangian formulation (rcfs. 11

and 12) and utilizes the preconditioned conjugate
gradient (PCG) iteration procedure (refs. 13 15) to

determine contact area and pressure distribution. To

demonstrate the capabilities of the analysis tech-

niques, numerical studies are presented for an in-

flated Space Shuttle nose-gear tire statically loaded

on a flat surface. The analysis assumes frictionless

contact. Analytical results are compared with ex-

perimental measurements.

Notation

bl, b2

c

Cij, dij, fij

c44, c45, c55

_'_,_'o

F_

($(z,p)}

{a(x)}

parameters defining geometry of tire

cross section (see fig. 3)

number of nodal points in contact
in the element

shell stiffness coefficients (i, j =

1,2,6)

transverse-shear stiffness coefficients

of the tire (see eq. (A10))

tangential unit vectors in the
meridional and circumferential

directions

elastic modulus (see fig. 6)

flexibility matrix for an individual
element

contact force

vector defined in equations (7)

vector of nonlinear terms (see

eq. (3))

vector of nonlinear terms in equa-

tions (4) and (5)

vector of nonlinear contributions to

the global equations
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{H}

h

hk

ho

{M(H,X)}

m

N

N=,Ne,N=e
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{P}

{T,}

P_

P

Po

P,s, PO, P

[O],[R]

Qs, Qo

current gap (measured in the
direction of the normal to the

contact surface)

initial gap

vector of initial gaps for contact
clement

vector of stress-resultant parameters

total thickness of tire

nondimensional thickness of tire

(see fig. 4)

thickness of individual layers of two-
dimensional shell model

total thickness of tire at { = 0 (see

fig. 3)

global linear stiffness matrix

bending and twisting stress resul-

tants (see fig. 1)

vector of nonlinear terms (see

eq. (3))

number of displacement nodes in
the element

shape functions used for approxi-

mating generalized displacements
and Lagrange multipliers

extensional stress resultants

total number of degrees of freedom

normalized external load parameter

global vector of normalized external
loads and initial gaps

nodal (contact) force normal to
contact surface

load parameter

intensity of inflation pressure

intensity of external loading in

coordinate directions (see fig. 1)

elemental matrices associated with

the contact condition and the

regularization term in the functional

transverse-shear stress resultants

(see fig. 1)

load parameter

R1, R2

ro

Is]

IT]

T_

U

U_ V_ W

fo

{x}

{x}

{z}

E

Es, CO,2CsO

Ok

ns, _0, 2_sO

t_l , t_2

/_1,o, _2,o

principal radii of curvature in
meridional and circumferential

directions

normal distance from tire axis to

the reference surface

=rat_=O

strain-displacement matrix for an
individual element

meridional coordinate of tire (see

fig. 1)

transformation matrix

intensity of contact pressure (acting

normal to contact surface)

strain energy density (strain energy

per unit area)

displacement components of the
reference surface of the tire in the

meridional, circumferential, and

normal directions (see fig. 1)

normal displacement at _ = 0 = 0

(see fig. 9)

vector of nodal displacements in the

shell coordinate system

vector of nodal displacements in

Cartesian coordinate system

Cartesian coordinate system

coordinate normal to tire reference

surface (see fig. 1)

global response vector

penalty parameter

extensional strains of reference
surface of tire

transverse-shear strains of tire

circumferential (hoop) coordinate of

tire (see fig. 1)

orientation angle used in equa-

tion (13) and table 5

orientation angle of tire cord, deg

bending strains of tire

principal curvatures in meridional
and circumferential directions of

reference surface of shell model

principal curvatures at ( = 0
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H

¢

Lagrange multiplier, representing

intensity of contact pressure acting
normal to contact surface

vector of nodal values of Lagrange

multipliers

dimensionless coordinate along

meridian (see fig. 4)

functional

rotation about the normal to tire

reference surface

¢s, ¢_

f_(e)

f_c

as

a_

Superscripts:

(e)

i,j

r

t

Subscript:

conv

rotational components of reference

surface of tire (see fig. 1)

element domain

contact surface

- O/Os

- 0/00

individual elements

indices of shape functions for

approximating Lagrange multipliers

index of shape function for approx-

imating generalized displacements
(i r ---- 1, m)

number of iteration cycles

matrix transposition

converged solution

Mathematical Formulation

The analytical formulation for frictionlcss contact
of aircraft tires is based on a form of the moderate-

rotation, Sanders-Budiansky shell theory with the ef-

fects of large displacements and transverse-shear de-
formation included. A mixed formulation is used

in which the fundamental unknowns consist of five

generalized displacements and eight stress resultants.

The sign convention for the generalized displace-
ments and stress resultants is given in figure 1. The

fundamental equations of the shell theory used herein

are given in references 9 and 10 and are summarized

in appendix A.

Contact Condition

Figure 2 shows the characteristics of frictionless

contact of a shell pressed against a rigid plate: _c

refers to the contact region; go is the initial gap

between the shell and the plate; 9 is the current gap

(both go and 9 are measured normal to 12c), and Tn
is the normal traction on g/c. The contact condition

can be expressed by the following inequalities and

equation, which must be satisfied at each point on
the contact surface Fie:

9 -> 0 (la)

Tn <_ 0 (lb)

Tn9 = 0 (lc)

The first inequality (eq. (la)) represents the kine-
matic condition of no penetration of the rigid plate

(zero gap for the contact points). The second in-

equality (eq. (lb)) is the static condition of com-
pressive (or zero) normal tractions. The third equa-

tion (eq. (lc)) states that there is zero work done by

the contact stresses (i.e., the contact stresses exist at

the points where the tire is in contact with the rigid

plate). The following inequalities are henceforth re-
ferred to as the inactive contact conditions:

> 0 (ld)

Tn > 0 (le)

Governing Finite-Element Equations

The discrete equations governing the response of

the tire are obtained by applying a modified form

of the two-field Hcllinger-Reissner mixed variational

principle. The modification consists of augmenting

the functional of that principle by two terms: the

Lagrange multiplier associated with the nodal con-

tact pressures and a regularization term which is

quadratic in the Lagrange multipliers. For detailed

discussion of the perturbed and the augmented La-

grangian formulations, see references 11, 12, and 16.

Thc modified functional has the following form:

II=IIHR+ i_-- _(i) dR (2)
C

where IIHR is the functional of the Hellinger-Reissner
variational principle, i is the Lagrange multiplier,

and c is the penalty parameter associated with the

regularization term. The explicit forms of III-IR for

axisymmetric shells are given in reference 4. Note

that the addition of the regularization term amounts

to approximating the rigid plate by continuously

distributed springs with stiffness E, for sufficiently

large ¢. As 1/¢ approaches zero, the continuous

springs become the rigid plate.
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The shapefunctionsusedin approximatingthe
generalizeddisplacementsandtheLagrangemultipli-
ersareselectedto bethesameanddifferfromthose
usedin approximatingthestressresultants.More-
over,becauseof the natureof the functionalII in
equation(2),thecontinuityof neitherthestressre-
sultantsnor the Lagrangemultiplieris imposedat
the intcrelcmcntboundaries.

Thefinite-elementequationsfor eachindividual
elementcanbecastin thefollowingcompactform:

+ M(H,X) - pP = 0 (3)

go

where {H}, {X}, and {A} are the vectors of the

stress-resultant parameters, nodal values of the gen-

eralized displacements, and the nodal values of the

Lagrange multipliers, respectively; IF] is the ma-

trix of linear flexibility coefficients; IS] is the strain-
displacement matrix; [Q] and [R] are the matrices

associated with the contact condition and the regu-

larization term in the functional (see appendix B);

{G(X)} and {M(H,X)} are vectors of nonlinear

terms; {9o} is the vector of initial gaps in the contact

region 9_. A dot refers to a zero submatrix or subvec-

tor; superscript (e) refers to individual elements; {P}
is the normalized external load vector; p is a load pa-

rameter. As the load is incremented, only the value

of the load parameter p changes, and the normalized

load vector {P} is constant. The formulas for the

elemental arrays [F], [S], {G(X)}, {M(H,X)}, and

{P} are given in reference 7. The formulas for the

elemental arrays [Q] and [R] are given in appendix B.

Note that the size of the coefficient matrices [R],

[Q], and {go} varies with the number of active con-

tact conditions. The difficulty associated with an

equation system whose size varies during the solution

process was alleviated by allowing the Lagrange mul-

tipliers to be discontinuous at interelemcnt bound-

aries and then eliminating them on the element level.
If the stress-resultant parameters and Lagrange mul-

tiplier parameters are eliminated from equation (3),

then the following equations in terms of nodal dis-

placements {X} are obtained:

[[s]t[F]-I[s]- e[Qj[R]-I[Qlt] (e) {x} (e)

+ {_(X)}(e) + e[Q][R]-l{goi(e) _ p{pi(e) -_ 0

(4)

where

{G(X)} (e) = [s]t[F] -1 {G(X)} (e) + {_I(H, X)} (e)

(S)

and the vector {H} in {M(H, X)} is replaced by its

expression in terms of {X}.

To simplify the treatment of the contact condi-

tions, the displacement components are transformed

from shell coordinates (s, 0, x3) to the global Carte-
sian coordinates (x, y, z) before assembly. The re-

lations between the displacement vector in the shell

coordinates, {X} (e), and the corresponding vector in

Cartesian coordinates, {_}(e), can be written in the

following compact form:

= (6)

where [T] is the transformation matrix. The differ-

ent arrays in the finite-element equations are trans-

formed accordingly. The explicit form of the trans-

formation relations is given in appendix C.

Solution of Nonlinear Algebraic Equations

Discrete equations governing the response of the

tire are obtained by assembling the elemental contri-

butions in equations (3) or (4) and can be writtcn in

the following form:

{?(Z,p)} = [k]{z} + {5(z)} - p{P} = o (7)

where [R'] is the global linear stiffness matrix of the

tire; {G(Z)} is the vector of nonlinear contributions;

{P} is the global vector of normalized external loads

and initial gaps; and {Z} is the global response vector
of the tire obtained by assembling the contributions

from the subvectors {H}, {X}, and {A}.

The nonlinear algebraic equations (eqs. (7)) are

solved and the contact region and the contact

pressures are determined by using an incremental-

iterative technique (i.e., a predictor-corrector com-

putation method) in which the response vector {Z}

corresponding to a particular value of the load pa-

rameter p is used to calculate a suitable approxima-

tion (predictor) for {Z} at a different value of p.

This approximation is then chosen as an initial es-

timate for {Z} in a corrective iterative scheme such

as the Newton-Raphson technique. In each Newton-
Raphson iteration the contact conditions are checked

and updated.
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Computational Procedure To Determine
Contact Pressures

Thecomputationalprocedureusedto determine
the contactregionandthecontactpressuresis out-
lined in this section. Nonlinearitiesdue to large
displacements(moderaterotations)andthecontact
conditionarecombinedinto a singleiterationloop.
Reference15advocatesatwo-level(nested)iteration
scheme.For the two-levelscheme,the inner itera-
tion loopaccountsfor thecontactconditionsassoci-
atedwith thecontactpressures,andtheouteritera-
tionloopusestheNewton-Raphsoniterationscheme.
Numericalexperimentshavedemonstratedthat for
frictionlesscontactproblemsthe two-leveliterative
schemerequiresmoreiterationsthanthesingle-level
scheme(seeref. 17).

Thesolutionof thegoverningdiscreteequations
of theentirestructuregeneratesthenodaldisplace-
ments,thestress-resultantparameters,andtheval-
uesof theLagrangemultipliersat thecontactnodes.
Foreachindividualelementin contact,the intensity
ofthecontactpressureat anode,Tn, is equal to the

value of the Lagrange multiplier A at the same node.

The contact pressures are also related to the nodal

forces normal to the contact surface, Pin, as follows:

Pin= / NigJd_T j (8)

f_(e)

where N i are the shape functions used in approxi-

mating the Lagrange multiplier and the generalized

displacements, and _t (c) is the domain of the contact

element. The range of both i and j in equation (8)

is from 1 to the number of displacement nodes in

the element. Other approaches for determining the

contact pressures are discussed in reference 18.

The computational procedure used in the present

study is summarized as follows:

Preprocessing and Initial Calculation Phases

• Step 1. Model tire geometry, evaluate stiffness

coefficients (ref. 19), and generate input data

including transformation matrices.

• Step 2. Select estimates for the penalty parame-
ter and assume the contact status at the selected

contact nodes.

• Step 3. Generate linear element arrays.

Solution Phase

• Step 4. Solve inflation pressure case without con-

tact using Newton-Raphson iteration scheme.

• Step 5. Generate initial gap between the inflated

tire configuration and the flat plate at designated
contact nodes.

* Begin displacement incrementation loop.

* Begin combined contact and Newton-Raphson
iteration loop.

• Step 6. Generate nonlinear element arrays, elimi-
nate the stress resultants and the Lagrange multi-

pliers from the elemental equations, and assemble
the left- and right-hand sides of the equations.

• Step 7. Solve equations (7) for the incremental

displacements.

• Step 8. Update the response vector for dis-

placements, stress resultants, and the Lagrange

multipliers:

Step 9. Check the contact status and modify the
contact conditions at each node as needed:

If _ > 0, and _ > 0, then the contact

constraint is inactive

If _ < 0, then the constraint is active

If the contact constraint is the same as that pre-

viously assumed, then continue. Otherwise, add
the active contact contribution to the list of nodes

with active constraints or subtract the contact

contribution from that list if the constraint is now

inactive and return to step 6.

• Step 10. Check convergence of the Newton-

Raphson iterations:

[{Az}'{zxz}/{z}'{z}] 1/2
e = < Tolerance

n

(10)
where e is the solution error, n is the total number

of degrees of freedom in the model, and the tol-

erance is prescribed. If convergence is achieved,
then compute the contact forces at each contact

node by

Pin = f Ui_dFt (11)
J_ (e)

and continue. Otherwise return to step 6.

• Step 11. If the prescribed displacement is greater

than the specified maximum displacement, then

stop. Otherwise, add additional displacement

and return to step 6.

The mixed-formulation finite elements used in

this study have nine displacement nodes and four



stress-resultantnodesand are designatedasM9-4
elementsin table1.

Comments on Mixed Models, Perturbed

Lagrangian Formulation, and

Computational Procedure

The following comments regarding the mixed

models, the perturbed Lagrangian formulation, and
the computational procedure used herein are in
order:

1. The nonlinear terms in the finite-element equa-

tions of the mixed model (eqs. (3)) have a simpler

form than those of the corresponding displace-

ment model (eq. (5)).

2. Equations (3) include both the Lagrange multi-
plier approach and the penalty method as special

cases, as follows:

a. As the penalty parameter e approaches infin-

ity, equations (3) reduce to those of the La-
grange multiplier approach.

b. When the Lagrange multiplier terms are elimi-

nated in equations (3), the resulting equations
are identical to the penalty method.

3. The perturbed Lagrangian formulation allevi-
ates two of the drawbacks associated with the

Lagrange multiplier approach and the penalty

method, namely:

a. The regularization term in the functional re-

sults in replacing one of the zero diagonal
blocks in the discrete equations of the La-

grange multiplier approach by the diagonal

matrix [R]/¢ in equations (3).

b. The contact condition is satisfied exactly

by transforming the constrained problem to

an unconstrained problem through the in-

troduction of Lagrange multipliers (the term

f_c _0df_ in eq. (2)) results in replacing the
contact condition by the perturbed condition:

_[RI{A} +- {go} = (12)[Olt{x) o

4. An important consideration in the perturbed La-

grangian formulation and in any penalty formu-

lation is the proper selection of the penalty pa-

rameter e. With the foregoing mixed models, the

penalty parameter can be chosen independently
of the element size without adversely affecting the

performance of the model. The accuracy of the

6

solution increases with increasing values of the

penalty parameter. However, for very large val-

ues of e, the equations become ill-conditioned and
thus round-off errors increase.

5. The elemental arrays [F], [S], (G(X)),

{M(H,X)}, and {P) are evaluated numerically

using a Gauss-Legendre formula. The arrays [Q],

[R], and {go} are evaluated using a Newton-Cotes
formula. In both cases the number of quadrature

points used is the same as the number of displace-
ment nodes in the element. This results in under-

integrating the arrays [Q] and [R] and avoids the
oscillatory behavior of the contact pressures that

has been observed when the arrays are fully inte-

grated. Note that the use of Newton-Cotes for-

mula allows the contact pressures to be evaluated

at the displacement nodes.

Results and Discussion

Numerical studies were performed to assess the

accuracy of the two-dimensional shell tire model, the

effectiveness of the proposed computational proce-

dure, and the performance of the contact algorithm.

To conduct these studies the 32 x 8.8, type VII, 16-

ply rating, Space Shuttle orbiter nose-gear tire was
modeled as a two-dimensional, laminated shell with
variable thickness and variable stiffness characteris-
tics. The outer surface of the tire was taken to be the

reference surface of the shell model. The geometric
characteristics of the tire are given in figure 3. The

tire carcass is constructed of 10 lamina of nylon and

rubber with an additional reinforcing ply beneath the

tire tread as shown in figure 4. The tire has a three-

groove tread pattern, but in this investigation the
tire model assumes a smooth tread pattern instead.
The rated load for the tire is 15 000 lb at an inflation

pressure of 320 psi. All experiments were conducted

at an inflation pressure of 300 psi. The following sec-
tions describe the experimental measurements used

to establish the tire geometry and to define the global

elastic response of the tire to inflation and static ver-

tical loading conditions. These sections also present
an evaluation of the tire stiffness characteristics and

numerical results with some limited comparisons be-

tween the analytical predictions and the experimen-
tal measurements.

Modeling of Tire Geometry

A Space Shuttle nose-gear tire was cut into sec-
tions and used to obtain accurate measurements of

the cross-sectional profile of the uninflated tire. A

smoothed spline under tension was used to fit a

curve through the measured coordinates of the cross-

sectional profile in a least-squares sense (see refs. 20



and 21). Becauseof symmetry,only half the cross
sectionwasmodele_. A smoothvari.ationof the
secondderivative,dd_zX,was achieved by adjusting
the standard deviations of the measured profile at

the data points. For a detailed description of spline

smoothing techniques, see references 21 to 23.

The spline function with the tension function fac-

tor set equal to 0.1 and slope continuity enforced at
both ends of the curves was used to generate addi-

tional points along the meridian of the tire. The in-

terpolation procedure is outlined in reference 20, and

the resulting geometric characteristics of the tire are

presented in figure 5. The thickness of the tire car-
cass at the nodal points of the finite-element model

was computed along the normal vector to the tire

reference (outer) surface by locating the points of in-
tersection of the normal vectors with the inner sur-

face of the tire carcass. To facilitate these compu-

tations the tire inner surface was approximated by a

set of third-degree polynomials.

orbiter nose-gear tire. To facilitate these measure-
ments, 209 circular, reflective targets were attached

to the tire as shown in sketch 1. The targets were

aligned along 19 meridional lines of the tire sidewall
and a video camera was used to record the target po-

sitions from 10 camera locations. A stereo photog-

raphy triangulation technique (refs. 24 and 25) was

used to define the location of each target in a global

coordinate system from these video images. The rms
measurement accuracies were found to be 1.3 mils,

2.9 mils, and 1.5 mils in the x-, y-, and z-coordinate

directions, respectively.

Static vertical load-deflection tests were con-

ducted on the inflated Space Shuttle nose-gear tire to

obtain a global measure of the tire elastic response.
For these tests the tire was slowly lowered onto a flat

plate until a maximum vertical load of approximately
30 000 lb was obtained and then slowly unloaded un-

til the tire lost contact with the surface. During this

loading process, an x-y plotter was used to monitor
the resulting tire hysteresis loop as shown in sketch 2.

/
x 2sI--

I 20 /,, "
Verucal / /,"

15 -- /load, r _,'"

t " I__ '_"_"_ t __,'_= I-"0- Increasing load_:_:_:i:. _:_ _',-':_::_-:._'_._:::

"__ _:... _ 5 I --_- Decreasing load

_, I __.:_ Displacement, N, in.

___':i::::::,'._..:_i¢,._.... "........ :'_-":

_$.::.:_:_:_:i_.':: : .._'.. _._. _ _..':. .

_M Sketch 2. Static vertical load-deflection curve for Space

_. _. Shuttle nose-gear tire.

Evaluation of Stiffness Coefficients of

Two-Dimensional Shell Model

Sketch 1. Arrangement of photogrammetry targets on Space

Shuttle nose-gear tire.

Measurements of Inflated Cross-Sectional

Profile and Vertical Load-Deflection

Response

Close-range photogrammetry techniques were

used to define the inflated profile of the Space Shuttle

I The cord-rubber composite was treated as a lam-

inated material. For the purpose of computing stiff-
ness variations in the meridional direction, the tire

model was divided into seven regions, as shown in

figure 4. Thickness of the individual carcass plies was
measured at the interfaces between the regions and

these values are given in table 2. A linear variation
was assumed for the thickness within each region.
The thickness of the tire tread and sidewall cover-

ing was computed by subtracting the sum of the

7



individualply thicknessesfrom the total thickness
of thecarcassat eachlocation.

Thematerialpropertiesofthedifferentplieswere
obtainedwith the mechanicsof materialapproach,
whichhasbeenwidelyappliedto rigid composites.
(Seerefs.26and 27.) Theelasticconstantsof the
tire constituentsusedin this studyarepresentedin
table 3. It wasassumedthat nyloncordsof two
differentdiameterswereusedin theconstructionof
the tire: 0.022in. for thebottomtwopliesandthe
treadreinforcementin regionI, and0.031in. for all
otherplies.

Thecordendcounts(epi)for individualpliesat
the regioninterfacesaregivenin table4. A linear
variationwasassumedfor epi within eachregion.
The formulasfor evaluatingthe compositeelastic
coefficientsfor eachply, from thepropertiesof the
plyconstituents,aregivenin reference19.

The stress-strainrelationshipsof the two-
dimensionalshellwereobtainedby first transform-
ing the stiffnessof eachof the individuallayersto
theglobalshellcoordinates(s andO) and then inte-

grating these coefficients through tile thickness. The
cord orientations in the individual plies of each re-

gion are given in table 5. The following formula was

used to determine Ok, the angle (in degrees) mea-

sured from the s-axis to the 0-axis, at the numerical

quadrature points:

f

148.96_2) °,= Max {(54.382- 3.884{ - 33°}

(13)

where _ is the dimensionless coordinate along the tire
meridian. The resulting shell constitutive relations

are given in appendix A. The meridional variations

of the stiffness coefficients are shown in figure 6.

Analysis of Space Shuttle Nose-Gear Tire

Under Inflation Pressure Loading

To access the accuracy of the two-dimensional
shell model of the Space Shuttle nose-gear tire, the

deformations produced by uniform inflation pres-

sure of 300 psi, acting normal to the interior sur-

face, were calculated using the geometrically nonlin-

ear shell theory. A strip of 30 finite elements was

used in modeling the tire cross section (a total of 480

stress-resultant parameters and 293 nonzero general-

izcd displacement parameters). The measured and

predicted cross-sectional profiles for the Space Shut-

tle nose-gear tire are presented in figure 7. The pri-

mary effect of inflation pressure is to expand the tire

profile in the cross-sectional regions I to V. The pre-

dicted inflated profile is in excellent agreement with

the measured profiles. Additional information on in-

flation pressure results is presented in reference 19.

Analysis of Inflated Space Shuttle Nose-
Gear Tire in Contact With a Flat Plate

Three different models were used in the analysis

of the Space Shuttle nose-gear tire in contact with

a flat plate. These models denoted as model 1,

model 2, and model 3 are depicted in figure 8. Each

model employed 360 elements in the region outside

the contact zone (0 < -0.2rr, 0 > 0.2rr). Model 1

included 180 elements in the contact region of the

tire (-0.2rr <_ 0 < 0.2rr) for a total of 540 elements.
Model 2 used a refined mesh within the contact

region with 360 contact elements for a total of 720

elements, and model 3 employed a more refined
mesh in the contact zone with 720 contact elements

for a total of 1080 elements. These models were

used to study the convergence characteristics of the

frictionless tire contact problem.

The load-deflection characteristics of the inflated

Space Shuttle nose-gear tire subjected to static verti-

cal loading against a rigid, flat plate are shown in fig-

ure 9. The faired load-deflection experimental data

for the tire during the loading cycle are denoted by
the solid line in the figure. These results indicate that

the global response of the tire to this loading condi-

tion is that of a stiffening spring. The unloading data

shown in sketch 2 are not reproduced in this figure

because the tire models presented herein do not ac-

count for damping effects. Predicted load-deflection

responses from model 1 are denoted by plus signs and

results from model 3 are denoted by triangular sym-

bols. The analytical results from both models are

in excellent agreement with the experimental data.
This result suggests that the global response of the

tire to contact loads will not be strongly influenced

by the inclusion of friction in the contact algorithm.

Furthermore, the close agreement between the two

analytical models suggests that the global response

of the tire is adequately represented by the coarse-
mesh model 1.

Predicted deformed configurations of the inflated

Space Shuttle nose-gear tire subjected to contact

loading at increasing vertical loads are shown in

figure 10. The graphic results show a sequence of

deformed configurations for the tire as the applied
deflection is increased from initial contact at no load

through a vertical deflection of 1.80 in. with a load
of approximately 24 000 lb. The top two rows of

pictures show the deformation sequence from the

three-quarter side and three-quarter front views and
the bottom two rows show the same deformation

8



sequencefromthe full sideandfront views.These
resultsweregeneratedfrommodel3output.

Predictedgrowthin tirecontactareaispresented
in figure 11. The threeviewsshowthe extentof
contactpredictedby model3 for tire deflectionsof
0.90 in., 1.5 in., and 1.80in. and verticalloads
of approximately7000lb, 13 000 lb, and 24 000 lb,
respectively.

Predicted variations in contact pressure distribu-

tion for the Space Shuttle nose-gear tire are shown

in figure 12. Analytical results are presented as color

contour plots to show the predicted distribution of

tire footprint pressures from model 3 for tire deflec-

tions ranging from 0.90 in. to 1.80 in. Peak contact

pressures are predicted to occur in the periphery of

the contact zone. For the Space Shuttle nose-gear

tire inflated to 300 psi the peak contact pressure is

approximately 350 psi. The effect of increasing tire

deflection, and hence vertical load, is to distribute

these peak pressures over a larger area; however, the

magnitude of the peak contact pressure for the 0.90-

in. deflection case is equivalent to the peak contact
pressure for the 1.80-in. deflection case.

Convergence characteristics of contact pressure

distribution are shown in figure 13. To illustrate

convergence characteristics of the predicted contact

pressure distribution, contact pressures along the tire

meridian at the center of contact (section a-a), cir-

cumferentially along the tire equator (section b-b),

and circumferentially along the edge of contact (sec-
tion c-c) are presented in the figure. The coarse-

mesh model 1 is shown to predict higher peak contact

pressures in the periphery of contact than the two

refined-mesh models along the central tire meridian

and along the tire equator. Along the circumferen-
tial edge of contact, the model with the most refined

mesh was needed to obtain a converged solution.

One means of showing regions of high strain due
to loads on a complex structure such as a tire is strain

energy density. Calculated variations in the strain

energy density distribution for the Space Shuttle
nose-gear tire are shown in figure 14 in the form of

color contour plots. Total strain energy density is
presented in figure 14(a) and transverse-shear strain

energy density is presented in figure 14(b). Total

strain energy density is primarily influenced by the

inflation pressure load. Since the normal tractions

associated with contact are compressive, the total

strain energy density is reduced in the region of

contact. Total strain energy density is also reduced
in the lower sidewall area near the bead. Transverse-

shear strain energy density is maximized in the tire

sidewall near the tire contact zone and along the

lower sidewall near the tire bead. In the contact

region the transverse-shear strain energy represents

about 25 percent of the total strain energy.

Analytical results presented in figures 11, 12,
and 14 indicate that the response characteristics

of the tire exhibit inversion (polar) symmetry with
respect to the coordinate center. As indicated in

reference 7, this symmetry condition can be exploited
to reduce the computational effort associated with

tire modeling.

The influence of the magnitude of the penalty

parameter on the accuracy of the total strain energy

and the total contact force is presented in figure 15.

The strain energy ratio, denoted by the dashed line,

and the contact force ratio, denoted by the solid line,

are plotted as a function of the base 10 logarithm of

the penalty parameter in the figure. Results in the

figure indicate that total calculated strain energy and
total contact force are insensitive to variations in the

penalty parameter over the range of 106 to 1015 .

Concluding Remarks

A computational procedure is presented for the

solution of frictionless contact problems of aircraft

tires. The Space Shuttle nose-gear tire is modeled

using a two-dimensional laminated anisotropic shell

theory with the effects of variation in material and

geometric parameters, transverse-shear deformation,

and geometric nonlinearities included. The contact

conditions are incorporated into the formulation by

using a perturbed Lagrangian approach with the fun-

damental unknowns consisting of the stress resul-

tants, the generalized displacements, and the La-
grange multipliers associated with the contact condi-

tions. The elemental arrays are obtained by using a
modified two-field, mixed variational principle. The

modification consists of augmenting the functional

of that principle by two terms: the Lagrange multi-

plier vector associated with nodal contact pressures

and a regularization term which is quadratic in the
Lagrange multiplier vector.

The shape functions used in approximating the

generalized displacements and the Lagrange multipli-
ers are selected to be the same and differ from those

used to approximate the stress resultants. The stress

resultants and the Lagrange multipliers are allowed
to be discontinuous at the interelement boundaries.

The nonlinearities due to both large displacements,
moderate rotations, and the contact conditions are

combined into the same iteration loop and are han-

dled by using the Newton-Raphson iterative scheme.

Numerical results are presented for the Space

Shuttle nose-gear tire subjected to inflation

9



pressureandcontactloadsagainsta rigid flat plate.
Themeasuredandcomputedinflatedprofilesof the
tire are in excellentagreement,and the measured
andcalculatedloaddeflectioncurvesof the tire for
static verticalloadingagainsta flat platearealso
in excellentagreement.Thenumericalstudieshave
demonstratedthe highaccuracyof themixedmod-

elsand the effectivenessof the computationalpro-
cedure,whichcombinesboth thegeometricallynon-
lineartermsandthecontactconditionsin oneitera-
tion loop.

NASALangleyResearchCenter
Hampton,VA23665-5225
February27,1991
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Appendix A

Fundamental Equations of Shell Theory Used in Present Study

The fundamental equations of the Sanders-Budiansky type shell of revolution used in the present study are
summarized herein. The effects of laminated, anisotropic material response and transverse-shear deformation
are included.

Strain-Displacement Relationships

w 1(_11 ) 212Gs=0su+_+_ -0sw +_¢ (A1)

GO= --u + OOV+ + OOW +r N (A2)

2GsO= _OOU+ (Os- _-_)V+ (RlU _OsW) (R2V rlO°w) (A3)

ns = OsSs (A4)

nO = Osrss + 10o¢0 (A5)
r T

1 0 (osO___) 1 12nsO = r OSs + -- ¢0-t- (R 2 R1)¢ (A6)

u

2Gs3 -- R1 + Osw + Ss (AT)

2e03 = - R--2+ Oow + ¢o (A8)

where Gs and G0 are the extensional strains in the meridional and circumferential directions; 2eso is the
extensional shear strain; ns and n 0 are the bending strains in the meridional and circumferential directions;
2nsO is the twisting strain; 2Gs3 and 2G03 are the transverse-shear strains; Os - O/Os; O0 - 0/00; and ¢ is the
rotation around the normal to the shell, which is given by

(A9)

The nonlinear terms that account for moderate rotations are underlined with dashes in equations (A1) to (A3).

Constitutive Relations

The shell is assumed to be made of a laminated, anisotropic, linearly elastic material. Every point of the
shell is assumed to possess a single plane of elastic symmetry parallel to the middle surface. The relationships
between the stress resultants and the strain measures of the shell are given by
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Ms dll dt2 @ n_= (AIO)

_I0 Symmetric d22 @ _0

Mso d66 nso

Qs c55 @ 2es3

Qo c44 2e03

where cij , fij, and dij (i, j = 1, 2, 6) are shell stiffness coefficients. The nonorthotropic (anisotropie) terms are
circled, and dots indicate zero terms.
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Appendix B
Formulas for Elemental Arrays [Q], [R], and {go}

The explicit forms of the elemental arrays [Q], JR], and {go} are given in this appendix. For convenience,

each array is partitioned into blocks according to contributions from displacement and contact nodes. The

expressions of the typical partitions are given in table B1. In table B1, N i and N j are the shape functions for

the Lagrange multipliers and generalized displacements, m is the number of displacement nodes in the element,

c is the number of nodal points in contact within the element, and 12(e) is the element domain. The range of

the indices i and j is from 1 to c, and the range of the index i / is from 1 to m; < _ > is the unit ramp (or

singularity) function defined as follows:

_ o)
< _ >n = (g > (B1)

0 (_ < O)

where_=-_andn=Oor 1.

Table B1. Explicit Form of Typical Partitions

of the Arrays [Q], [R], and {go}

Array

[Q]

[R]

(go}

Number of partitions Formula for typical

or blocks partition

mxc

c×c

c

f Ni'N j < _ >0 df_
it(e)

_ f NiN j <_>0d_
f_(e)

f Ni<[?> dr2
f_(_)
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Appendix C
Transformation of Elemental Arrays From Shell Coordinates to Global Cartesian

Coordinates

The transformation of the displacement components from the shell coordinates (s,0, x3) to the global
Cartesian coordinates (x, y, z) is expressed by the following equation:

{x}(e) = [r]{x}(e)

where [T] is a block-diagonal transformation whose submatrix at each node is given by

(C1)

Ie3 _0 Gx_0 6 i]

[r](_) 1
(5 x 5) _- 0

0

(c2)

gs and 6*-0are the tangential unit vectors in the s- and &directions, respectively; {?is the null vector; {X} (e) and

{_}(e) are the generalized displacements in shell coordinates and global Cartesian coordinates, respectively.

Note that the rotation components Cs and Ce are not transformed since the outer surface of the tire was chosen

as the reference surface and, therefore, Cs and 00 do not appear in the contact conditions.

The elemental matrices [S] and [_] and the external load vector {p} are transformed from the shell

coordinates to the global Cartesian coordinates as follows:

IS] -_ [S][T] (C3)

[OM] Fo i1---* [Tit L_-] [T] (C4)

{P}--* [T]t{P} (C5)

The__nonlinear vectors {G(X)} and {M(H, X)} are evaluated with displacement vector (X} expressed in terms
of {X} at the end of each iteration cycle.
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Table 1. Characteristics of Mixed Finite-Element Model

Used in the Numerical Studies

Designation

M9-4

Number of

displacement
nodes

3x3

Maximum number

of Lagrange

multipliers

3x3

Number of

parameters per
stress resultant

2x2

Number of

quadrature
points*

3x3

* All elemental arrays are evaluated using Gauss-Legendre quadrature formulas

exccpt for [Q], [R], and {go}, which are evaluated using Newton-Cotes formulas.

Table 2. Variation of Ply Thickness hk/h o

[ho = 0.7513 in.]

16

Ply number

(top to bottom)

1

(tread and sidewall)

hk/ho for region

I II III IV V VI VII

16
hi=h- _ hk

k=2
a2 0.0865 0.0865 0.0658 0.0692 0.0801- 0.0681- 0.0918-

.0865 .0658 .0692 .0813 .0937 .1238 .1240

3 0.0865 0.0865 0.0658 0.0692 0.0801- 0.0681- 0.0918-

.0865 .0658 .0692 .0813 .0937 .1238 .1240
4

10

11

12

13

14

0.0865-

.0865

0.0666

.0666

0.0666

.0666

0.0666

.0666

0.0666-

.0666

0.0666-

.0666

0.0666

.0666

0.0466

.0466

0.0466

.0466

0.0798

.0798

0.0666-

.0506

0.0666

.0506

0.0666

.0506

0.0666

.0506

0.0666

.0506

0.0666

.0506

0.0466

.0354

0.0466-

.0354

O.O798

.0798

15

16

0.0506

.0532

0.0506

.0532

0.0506

.0532

0.0506

.0532

0.0506

.0532

0.0506

.0532

0.0354-

.0373

0.0354-

.0373

0.0798-
.0798

0.0692

.0813

0.0426

.0500

0.0426

.0500

0.0426

.0500

0.0426
.0500

0.0426

.0500

0.0426-

.0500

0.0346

.0407

0.0346

.0407

0.0798

.0798

0.0488-
.0571

0.0488-

.0571

0.0488-

.0571

0.0488-
.0571

0.0488-
.0571

0.0488

.0571

0.0488

.0571

0.0488-
.0571

0.0375-

.0439

0.0375-

.0439

0.0798

.0798

0.0523-

.0950

0.0523-

.0950

0.0523-
.0950

0.0523-

.0950

0.0523-

.0950

0.0523-

.0950

0.0523

.0950

0.0523-

.0950

0.0523-

.0950

0.0523-

.0950

0.0366

.0666

0.0366

.0666

0.0798-

.1464

0.0652

.0880

0.0652-

.0880

b0.2662-

,3594

0.0652-

.0880

0.0652

.0880

0.0652-

.0880

0.0652

.0880

b0.2662

.3594

0.0652-

.0880

0.0652

.0880

0.0466

.0629

0.0466-

.0629

0.1464-

.1597

a Second layer of region I represents the layer that has the reinforcement (see fig. 4).
b This represents the thickness of the bead wires.



Table 3. Values of Elastic Constants of Tire Constituents Used in Present Study

Tire constituent

Rubber

Nylon cord
Bead a

Young's modulus,
psi

4.5 x 102
3.5 × 105

2.9 × 10 7

Shear modulus,
psi

1.51x 102

7.00x 102

I.i0x 107

Poisson's ratio

0.49

.66

.30

a Since the deformations are small in the bead area, it is reasonable to assume

that the bead wires are isotropic.

Table 4. Variation of Nylon Cord End Counts in Different Plies Along Meridian

Cord end count, ends per inch for region--

Ply number
(top to bottom) I II III IV V VI VII

Rubber Rubber Rubber Rubber Rubber Rubber Rubber1

(tread and sidewall)
2
3
4
5
6

7-9
10
11
12
13
14

15
16

16-16
18-18
18-18
23-21
23-21
23-21
23 21
30-29
30-29

Rubber

18-14
18-14
21-20
21-20
21-20
21-20
29-26
29-26

Rubber

14-14
14 14
20-18
20-18
20 18
20-18
26-25
26-25

Rubber

14-14
14-14
18-16
18-16
18-16
18-16
18-16
25-24
25 24

Rubber

14-14
14-14
16-16
16-16
16-16
16-16
16-16
16-16
24-22
24-22

Rubber

14-14
14-14
16-14
16-14
16-14
16-14
16-14
16-14
16-14
16-14
22-22
22-22

Rubber

14-14
14-14
14-14
14-14
Bead
14-14
14-14
Bead
14-14
14 14
22-22
22-22

Rubber

17



Table5. Variationof CordOrientationof IndividualPlies,Ok, Along Meridian

Ply number

(top to bottom) __ I
1 Rubber
2 _-6
3

4 -0

5
6 -0
7
8 -0

9

10 -_
11 8+6

12 -_ - 6

13 Rubber

14

15
16

II

Rubber

0+6
-0-6
Rubber

Ok, deg, for region--

III
Rubber

_+6
-_-6
Rubber

IV
Rubber

-0

-0

o+6
-_-6
Rubber

V
Rubl_er

-0

-0
0+6

-0-6
Rubber

VI
Rubber

-0

-b

-b
b+6

-_-6
Rubber

VII

Rubber

Bead

Bead

0+6
-_-6
Rubber
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_ _ loading

s, Ps Q [ 0

_u _ _lNs 'Nso

'+s I

Generalized displacements Stress resultants

Figure 1. Two-dimensional model of the tire and sign convention for the external loading, generalized
displacements, and stress resultants.
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Figure 2. Characteristics of frictionless contact of a shell pressed against a rigid plate.
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Figure 3. Geometric characteristics of Space Shuttle nose-gear tire.
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Figure 4.
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Cross section of Space Shuttle nose-gear tire showing seven model regions.
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1

.5

0
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-1.5
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0
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.1 .2 .3 .4 .5

5

0
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_=0

I I .... I I ]
0 .1 .2 .3 .4 .5

Figure 5. Meridional variation of geometric parameters of two-dimensional shell model of Space Shuttle
nose-gear tire. Reference surface chosen to be outer surface, ro = 15.1737 in.; _2,o = 0.0659 in-l;

_1,o = 0.1091 in -1.
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(a) Stiffness coefficients associated with uncoupled (orthotropic) response.

Figure 6. Meridional variation of stiffness coefficients of two-dimensional shell model of Space Shuttle nose-gear

tire. ETo = 1160.3 psi; ho = 0.7513 in.
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Figure 7. Inflated and uninflated profiles of Space Shuttle nose-gear tire.
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Model 1 Model 2 Model 3
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540 (30 × 18) 720 (30 x 24) 1080 (30 x 36)

Figure 8. Finite-element models of Space Shuttle nose-gear tire used in present study.
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Figure 9. Static vertical load-deflection characteristics of Space Shuttle nose-gear tire.
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Figure 10. Deformed configurations of Space Shuttle nose-gear tire. The tire is subjected to
inflation pressure po = 300 psi and is pressed against a rigid pavement.
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Figure 11. Variation of footprint areas with applied displacements. The tire is subjected to uniform

inflation pressure Po = 300 psi and is pressed against a rigid pavement:
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Figure 15. Effect of magnitude of penalty parameter on the accuracy of the total strain energy and the contact
force, po = 300 psi.
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